Program to Find Roots of a Quadratic Equation

 The standard form of a quadratic equation is:

ax2 + bx + c = 0, where

  • a, b and c are real numbers and
  • a != 0
  • The term b2 - 4ac is known as the discriminant of a quadratic equation. It tells the nature of the roots.
  • The roots are real and distinct if the discriminant is higher than 0.
  • The roots are real and equal if the discriminant is equal to 0.
  • The roots are complicated and distinct if the discriminant is smaller than 0.
Program to Find Roots of a Quadratic Equation

C Program to Find Roots of a Quadratic Equation

#include <math.h>

#include <stdio.h>

int main() {

    double a, b, c, discriminant, root1, root2, realPart, imagPart;

    printf("Enter coefficients a, b and c: ");

    scanf("%lf %lf %lf", &a, &b, &c);

    discriminant = b * b - 4 * a * c;


    // condition for real and different roots

    if (discriminant > 0) {

        root1 = (-b + sqrt(discriminant)) / (2 * a);

        root2 = (-b - sqrt(discriminant)) / (2 * a);

        printf("root1 = %.2lf and root2 = %.2lf", root1, root2);

    }

    // condition for real and equal roots

    else if (discriminant == 0) {

        root1 = root2 = -b / (2 * a);

        printf("root1 = root2 = %.2lf;", root1);

    }

    // if roots are not real

    else {

        realPart = -b / (2 * a);

        imagPart = sqrt(-discriminant) / (2 * a);

        printf("root1 = %.2lf+%.2lfi and root2 = %.2f-%.2fi", realPart, imagPart, realPart, imagPart);

    }

    return 0;

Expected Output:-

Enter coefficients a, b and c: 2.3

4

5.6

root1 = -0.87+1.30i and root2 = -0.87-1.30i

Note:-The sqrt() library function is used to find the square root of an integer in this application.

Post a Comment

Previous Post Next Post